课程价格 :
¥799.00
剩余名额
0
-
学习时长
8周/建议每周至少6小时
-
答疑服务
专属微信答疑群/讲师助教均参与
-
作业批改
每章节设计作业/助教及时批改评优
- 第1章: A Brief Introduction of Recommender Systems in The Age of AI
- 1:【课件】推荐系统 Lecture1.pdf
- 第1节: introduction
- 2:【视频】推荐系统简介
- 第2节: 作业
- 3-1:【代码】L1.zip
- 3-2:【作业】第1次
- 3-3:作业所需数据集
- 4:【作业讲评】第一章
- 第2章: Evaluation Approaches and Metrics for Recommender Systems
- 5:【课件】推荐系统 Lecture2.pdf
- 第1节: Introduction
- 6:【视频】Introduction
- 第2节: Evaluation approaches for recommender systems(Offline experiments,User studies,Online trails)
- 7:【视频】Evaluation approaches
- 第3节: Evaluation metrics of recommender systems(Accuracy metrics,Non-accuracy metrics)
- 8:【视频】Evaluation metrics
- 第4节: Summary and thinking
- 9-1:【视频】Summary and thinking
- 9-2:【作业】第2次
- 第3章: Regression Models in Recommender Systems using User and Item Features
- 第1节: regression model
- 10-1:【课件】Lecture3.pdf
- 10-2:【视频】回归模型
- 第2节: Practice:Apply linear regression to predict movie ratings
- 11-1:【作业】第3节:回归模型实践
- 11-2:作业所用数据集
- 第4章: Factorization Approaches in Recommender Systems
- 第1节: Factorization Models
- 12-1:【课件】Lecture4 Factorization Models.pdf
- 12-2:【视频】Factorization Models
- 第2节: Practice I:Implement ALS MF
- 13:【作业】assignment1
- 第3节: Practice II:Implement feature based MF
- 14:【作业】assignment2
- 第5章: Bridge Deep Learning to Recommender Systems
- 15:【课件】L5.DeepRS.pdf
- 16:【视频】Deep Learning to Recommender Systems
- 第1节: Practice l:Implement Deep Regression Model to predict movie ratings
- 17:【作业】第五节:assignment1
- 第2节: Practice II:Implement Neural MF to predict movie ratings
- 18:【作业】第五节:assignment2
- 第6章: Session-based Recommender Systems
- 19:【课件】L6. Session-based Recommender Systems_v6
- 20:【视频】L6 Session-based Recommender Systems_v6
- 第1节: Practice I:Implement a Markov chain based next-basket recommender systems
- 21:【作业】assignment1
- 第2节: Practice II:Implement an RNN-based SBRS GRU4REC
- 22:【作业】assignment2
- 第7章: Graph-based Recommender Systems
- 23:【课件】Graph Learning-based Recommender Systems.pdf
- 24:【视频】Graph Learning-based Recommender Systems
- 第1节: Practice I:Implement a random walk-based recommender system for friend recommendation in a social network dataset.
- 25:【作业】assignment1
- 第2节: Practice II:Implement a GNN-based recommender system for social recommendation to incorporate social relations for rating prediction.
- 26:【作业】assignment2
- 第8章: Towards Semantic and Explainable Recommender Systems
- 第1节: 【第八章】课件
- 27-1:【课件】第八章
- 27-2:【视频】L8.SemanticRS-zs
- 第2节: 作业
- 28:【作业】第八章